4.3 Article

The DLVO Energy Interaction of Nanorough Surfaces by Spherical Coordinates

Journal

JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY
Volume 37, Issue 6, Pages 884-893

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/01932691.2015.1070356

Keywords

DLVO theory; model; nanoparticles; rough surface; spherical coordinate; stability

Ask authors/readers for more resources

By a new method of modeling, the DLVO energy interaction between rough nanoparticles and rough surfaces is investigated at various conditions. Rippled sphere model and surface element integration method are used. For calculation of energy interaction, the spherical coordinates are used and by increasing the radius ratio of two particles, the pseudo flat surfaces are generated. With increasing the radius ratio of two particles to 50, the large particle behaves as flat surface in front of small particle. Roughness, size of particles, temperature, zeta potential, capacity, and concentration of ions, which influence the stability of nanocolloidal solutions, are considered by the new method. Spherical coordinates enable to model the rough nanoparticles and rough surfaces so that no simplifying assumptions are needed, which was very difficult and time-consuming in Cartesian coordinate system. New method could predict the effect of different parameters on the stability of nanocolloidal systems precisely, easily, and at short times in comparison to Cartesian coordinate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available