4.7 Article

Application of a three-dimensional poroelastic BEM to modeling the biphasic mechanics of cell-matrix interactions in articular cartilage

Journal

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Volume 196, Issue 31-32, Pages 2999-3010

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2006.08.020

Keywords

boundary element method; biphasic theory; poroelasticity; articular cartilage; cells

Funding

  1. NIAMS NIH HHS [R01 AR048182, P01 AR050245-04, R01 AR048182-03, P01 AR050245] Funding Source: Medline
  2. NIA NIH HHS [R01 AG015768, R01 AG015768-09] Funding Source: Medline
  3. NATIONAL INSTITUTE OF ARTHRITIS AND MUSCULOSKELETAL AND SKIN DISEASES [P01AR050245, R01AR048182] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE ON AGING [R01AG015768] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three-dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available