4.6 Article

Alternative 3 ' pre-mRNA processing in Saccharomyces cerevisiae is modulated by Nab4/Hrp1 in vivo

Journal

PLOS BIOLOGY
Volume 5, Issue 1, Pages 15-22

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.0050006

Keywords

-

Ask authors/readers for more resources

The Saccharomyces cerevisiae RNA-binding protein Nab4/Hrp1 is a component of the cleavage factor complex required for 3' pre-mRNA processing. Although the precise role of Nab4/Hrp1 remains unclear, it has been implicated in correct positioning of the cleavage site in vitro. Here, we show that mutation or overexpression of NAB4/HRP1 alters polyA cleavage site selection in vivo. Using bioinformatic analysis, we identified four related motifs that are statistically enriched in Nab4-associated transcripts; each motif is similar to the known binding site for Nab4/Hrp1. Site-directed mutations in predicted Nab4/Hrp1 binding elements result in decreased use of adjacent cleavage sites. Additionally, we show that the nab4-7 mutant displays a striking resistance to toxicity from excess copper. We identify a novel target of alternative 3' pre-mRNA processing, CTR2, and demonstrate that CTR2 is required for the copper resistance phenotype in the nab4-7 strain. We propose that alternative 3' pre-mRNA processing is mediated by a Nab4-based mechanism and that these alternative processing events could help control gene expression as part of a physiological response in S. cerevisiae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available