4.4 Article

Extension of the MST continuum solvation model to the RM1 semiempirical Hamiltonian

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 29, Issue 4, Pages 578-587

Publisher

WILEY
DOI: 10.1002/jcc.20814

Keywords

RMI Hamiltonian; semiempirical method; solvation; MST model; continuum solvation

Funding

  1. ICREA Funding Source: Custom

Ask authors/readers for more resources

The need to simulate large-sized molecules or to deal with large series of compounds is a challenging topic in computational chemistry, which has stimulated the development of accurate semiempirical methods, such as the recently reported Recife Model 1 (RM 1; J Comput Chem 2006, 27, 110 1). Even though RM I may prove to be of value simply due to the enhanced quantitative accuracy in gas phase, it is unclear how the new parameters optimized for RM1 affect the suitability of this semiempirical Hamiltonian to study chemical processes in condensed phases. To address this question, we report the parametrization of the MST/RM1 continuum model for neutral solutes in water, octanol, chloroform and carbon tetrachloride, and for ions in water. The results are used to discuss the transferability of the solvation parameters implemented in previous MST/AM1 and MST/PM3 models. (c) 2007 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available