4.3 Article Proceedings Paper

Mapping changing temperature patterns over a glacial moraine using oblique thermal imagery and lidar

Journal

CANADIAN JOURNAL OF REMOTE SENSING
Volume 36, Issue -, Pages S257-S265

Publisher

CANADIAN AERONAUTICS & SPACE INST
DOI: 10.5589/m10-053

Keywords

-

Categories

Ask authors/readers for more resources

Due to access difficulties in active alpine moraine environments, it can be challenging to accurately map and quantify debris cover and ice-core extent. To aid in identifying the presence and extent of ice-cored moraine, a non-invasive method of mapping spatial and temporal moraine temperature patterns using a light detection and ranging (lidar) digital elevation model (DEM) and sequences of oblique thermal imagery was evaluated. A procedure of lidar DEM-based orthorectification of thermal images collected through time from different locations enabled maps of temperature change to be generated and thermal signatures plotted. Although no exposed ice was visible on the moraine slope studied, the presence of shallow ice core beneath the debris-covered surface was inferred in areas of cooler temperatures during daylight solar heating and rapid thermal decay after sunset. It is presumed that this apparent increased heat loss in some areas of the moraine is being used to drive internal melt processes. It is believed that such temporal thermal imaging at high repetition frequency will aid in remotely mapping the presence of buried ice and, with the combination of energy balance data and further field validation, could enable the estimation of debris cover depth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available