4.3 Article Proceedings Paper

Modeling the hemispherical scanning, below-canopy lidar and vegetation structure characteristics with a geometric-optical and radiative-transfer model

Journal

CANADIAN JOURNAL OF REMOTE SENSING
Volume 34, Issue -, Pages S385-S397

Publisher

CANADIAN AERONAUTICS SPACE INST
DOI: 10.5589/m08-047

Keywords

-

Categories

Ask authors/readers for more resources

This study applied a hybrid canopy geometric optical and radiative transfer (GORT) model to study the vegetation structure characteristics and lidar signals from a terrestrial below-canopy lidar instrument, Echidna Validation Instrument (EVI), developed by CSIRO Australia. Off-nadir scans from the below-canopy lidar show strong laser energy returns from both leaves and tree trunks. The GORT model was modified to include the effect of both leaves and trunks on below-canopy lidar energy returns by treating the trunks as simple uniform cylinders extending to the middle of each tree crown. GORT was also extended to allow multiple canopy layers by convolution of the canopy gap probability profiles for individual canopy layers. The extended leaf-and-trunk GORT model was evaluated by comparing the modeled and EVI-derived gap probability profiles in a single-layer pine plantation and a two-layer eucalypt forest at the Tumbarumba flux tower site in southeastern New South Wales, Australia. Results show that the new leaf-and-trunk GORT model improves estimates of EVI-derived gap probability profiles. This study demonstrates the potential use of terrestrial upward-scanning hemispherical lidar to retrieve forest canopy structural information. A future goal is to link these terrestrial hemispherical lidar measurements to downward-looking airborne lidar, such as the Laser Vegetation Imaging Sensor (LVIS), and spaceborne lidar, such as the Geoscience Laser Altimeter System (GLAS) on ICESat, through a common model to provide large-area mapping of vegetation structural properties and biomass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available