3.8 Article

Discrete element simulation of localized deformation in stochastic distributed granular materials

Journal

Publisher

SCIENCE PRESS
DOI: 10.1007/s11433-008-0132-4

Keywords

granular material; localized deformation; modified discrete element method

Ask authors/readers for more resources

The deformation in granular material under loading conditions is a problem of great interest currently. In this paper, the micro-mechanism of the localized deformations in stochastically distributed granular materials is investigated based on the modified distinct element method under the plane strain conditions, and the influences of the confining pressure, the initial void ratio and the friction coefficient on the localized deformation and the stability of granular materials are also studied. It is concluded, based on the numerical simulation testing, that two crossed shear sliding planes may occur inside the granular assembly, and deformation patterns vary with the increasing of transverse strain. These conclusions are in good agreement with the present experimental results. By tangential velocity profiles along the direction normal to the two shear sliding planes, it can be found that there are two different shear deformation patterns: one is the fluid-like shear mode and the other is the solid-like shear mode. At last, the influences of various material parameters or factors on localized deformation features and patterns of granular materials are discussed in detail.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available