4.1 Article

Nitrogen and crop rotation effects on fusarium crown rot in no-till spring wheat

Journal

CANADIAN JOURNAL OF PLANT PATHOLOGY
Volume 31, Issue 4, Pages 456-467

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07060660909507620

Keywords

fusarium crown rot; no-till; Triticum aestivum; Fusarium pseudograminearum; F. culmorum; rotation crops; pea; barley; canola; nitrogen

Categories

Funding

  1. Washington Wheat Commission
  2. R. James Cook Endowed Chair in Wheat Research

Ask authors/readers for more resources

Fusarium crown rot of wheat (Triticum aestivum), caused by Fusarium pseudograminearum and Fusarium culmorum, is a yield-limiting disease in the dryland wheat-production area of the intermountain Pacific Northwest and is exacerbated in water-stressed plants induced by overfertilizing with nitrogen (N). Plants with excess N deplete water from the soil profile more rapidly and become drought stressed prematurely. Traditionally a problem on winter wheat in summer fallow, this disease has become more important for spring wheat in continuous cropping areas managed for high grain protein levels. During 3 years with direct seeding (no till) near Pullman, Washington, we investigated whether a split application of N, with some applied the previous fall and some with planting, could limit the disease compared with all N applied in the spring and with no N as the check. We also investigated the influence of the previous (rotation) crop (winter and spring canola, Brassica rapa; barley, Hordeum vulgare; or peas, Pisum sativum) on disease, grain yield, grain protein concentration, and populations of Fusarium in the soil. Overall, the DNA concentration of F. culmorum was significantly greater than F. pseudograminearum, and F. culmorum was highest following spring barley. Disease severity and yield were consistently lower in the no-N treatments compared with the other N treatments. The split application reduced disease in only 1 of 3 years. The all-spring application resulted in higher grain protein in 2 of 3 years compared with the split application, but yield was not affected. The previous crop had small but significant effects on disease, but they were not consistent from year to year and often interacted with the N treatment. Grain protein was higher in wheat after pea in 2 of 3 years. In conclusion, splitting of N had little effect on fusarium crown rot, probably because the N level in both treatments was conducive for disease development. Even if not a host species, the previous crop had little effect on subsequent disease, probably because Fusarium persists for more than one season as chlamydospores and in crop residue in this dry summer climate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available