4.5 Article

Homozygous PMS2 germline mutations in two families with early-onset haematological malignancy, brain tumours, HNPCC-associated tumours, and signs of neurofibromatosis type 1

Journal

EUROPEAN JOURNAL OF HUMAN GENETICS
Volume 16, Issue 1, Pages 62-72

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.ejhg.5201923

Keywords

PMS2; homozygous mutations; childhood cancer syndrome (CCS); hereditary nonpolyposis; colorectal cancer (HNPCC, Lynch) syndrome; mismatch repair (MMR) system

Ask authors/readers for more resources

Heterozygous germline mutations in mismatch repair (MMR) genes MLH1, PMS2, MSH2, and MSH6 cause Lynch syndrome. New studies have indicated that biallelic mutations lead to a distinctive syndrome, childhood cancer syndrome (CCS), with haematological malignancies and tumours of brain and bowel early in childhood, often associated with signs of neurofibromatosis type 1. We provide further evidence for CCS reporting on six children from two consanguineous families carrying homozygous PMS2 germline mutations. In family 1, all four children had the homozygous p.1590Xfs mutation. Two had a glioblastoma at the age of 6 years and one of them had three additional Lynch-syndrome associated tumours at 15. Another sibling suffered from a glioblastoma at age 9, and the fourth sibling had infantile myofibromatosis at 1. In family 2, two of four siblings were homozygous for the p.G271V mutation. One had two colorectal cancers diagnosed at ages 13 and 14, the other had a Non-Hodgkin's lymphoma and a colorectal cancer at ages 10 and 11, respectively. All children with malignancies had multiple cafe-au-lait spots. After reviewing published cases of biallelic MMR gene mutations, we provide a concise description of CCS, revealing similarities in age distribution with carriers of heterozygous MMR gene mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available