4.5 Article Proceedings Paper

Optical remote mapping of rivers at sub-meter resolutions and watershed extents

Journal

EARTH SURFACE PROCESSES AND LANDFORMS
Volume 33, Issue 1, Pages 4-24

Publisher

WILEY
DOI: 10.1002/esp.1637

Keywords

remote sensing; rivers; fluvial; geomorphology; hydrology

Ask authors/readers for more resources

At watershed extents, our understanding of river form, process and function is largely based on locally intensive mapping of river reaches, or on spatially extensive but low density data scattered throughout a watershed (e.g. cross sections). The net effect has been to characterize streams as discontinuous systems. Recent advances in optical remote sensing of rivers indicate that it should now be possible to generate accurate and continuous maps of in-stream habitats, depths, algae, wood, stream power and other features at sub-meter resolutions across entire watersheds so long as the water is clear and the aerial view is unobstructed. Such maps would transform river science and management by providing improved data, better models and explanation, and enhanced applications. Obstacles to achieving this vision include variations in optics associated with shadows, water clarity, variable substrates and target-sun angle geometry. Logistical obstacles are primarily due to the reliance of existing ground validation procedures on time-of-flight field measurements, which are impossible to accomplish at watershed extents, particularly in large and difficult to access river basins. Philosophical issues must also be addressed that relate to the expectations around accuracy assessment, the need for and utility of physically based models to evaluate remote sensing results and the ethics of revealing information about river resources at fine spatial resolutions. Despite these obstacles and issues, catchment extent remote river mapping is now feasible, as is demonstrated by a proof-of-concept example for the Nueces River, Texas, and examples of how different image types (radar, lidar, thermal) could be merged with optical imagery. The greatest obstacle to development and implementation of more remote sensing, catchment scale 'river observatories' is the absence of broadly based funding initiatives to support collaborative research by multiple investigators in different river settings. Copyright (c) 2007 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available