4.4 Article

Electro-mechanical impedance-based wireless structural health monitoring using PCA-data compression and k-means clustering algorithms

Journal

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/1045389X07077400

Keywords

electromechanical impedance; wireless; structural health monitoring; on-board active sensor system; self-sensing macro-fiber composite patch; principal component analysis; k-means clustering

Ask authors/readers for more resources

This article presents a practical method for an electro-mechanical impedance-based wireless structural health monitoring (SHM), which incorporates the principal component analysis (PCA)-based data compression and k-means clustering-based pattern recognition. An on-board active sensor system, which consists of a miniaturized impedance measuring chip (AD5933) and a self-sensing macro-fiber composite (MFC) patch, is utilized as a next-generation toolkit of the electromechanical impedance-based SHM system. The PCA algorithm is applied to the raw impedance data obtained from the MFC patch to enhance a local data analysis-capability of the on-board active sensor system, maintaining the essential vibration characteristics and eliminating the unwanted noises through the data compression. Then, the root-mean square-deviation (RMSD)-based damage detection result using the PCA-compressed impedances is compared with the result obtained from the raw impedance data without the PCA preprocessing. Furthermore, the k-means clustering-based unsupervised pattern recognition, employing only two principal components, is implemented. The effectiveness of the proposed methods for a practical use of the electromechanical impedance-based wireless SHM is verified through an experimental study consisting of inspecting loose bolts in a bolt-jointed aluminum structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available