4.5 Article

Inhibition of integrin-linked kinase via a siRNA expression plasmid attenuates connective tissue growth factor-induced human proximal tubular epithelial cells to mesenchymal transition

Journal

AMERICAN JOURNAL OF NEPHROLOGY
Volume 28, Issue 1, Pages 143-151

Publisher

KARGER
DOI: 10.1159/000110019

Keywords

connective tissue growth factor; integrin-linked kinase; RNA interference; epithelial-to-mesenchymal transition

Ask authors/readers for more resources

Background: Increasing evidence suggests that connective tissue growth factor (CTGF) is involved in the epithelial-to-mesenchymal transition (EMT). The exact intracellular events that drive this process, however, are not fully understood. In this study, we investigated the role of integrin-linked kinase (ILK) in mediating CTGF-induced EMT. Methods: The expression of alpha-smooth muscle actin (alpha-SMA) and E-cadherin upon the stimulation by recombinant human CTGF (rhCTGF) in cultured human tubular epithelial cell line (HK-2) was detected by real-time RT-PCR and Western blot. Subsequently, the role of ILK was determined by using ILK siRNA. Results: rhCTGF increased the mRNA expression of alpha-SMA significantly in a dose- and time-dependent manner, while E-cadherin mRNA decreased in a dose- and time-dependent manner. alpha-SMA protein was up- regulated after stimulation by 5 ng/ml CTGF for 96 h, and increased further after stimulation by 50 ng/ml. An immunocytochemical study showed that alpha-SMA was initially detectable at 48 h, and increased further at 72 h, while there was almost no alpha-SMA immunostaining observed in the control group at the same time point. E-cadherin protein was also down-regulated in a dose-dependent manner. Transfection of HK-2 cells with ILK-siRNA significantly attenuated rhCTGF-induced alpha-SMA induction and E-cadherin repression. Conclusion: Our study suggested that ILK mediated the effect of EMT in proximal tubular epithelial cells stimulated by CTGF. Copyright (c) 2007 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available