4.3 Article Proceedings Paper

Modulation of erythrocyte deformability by PKC activity

Journal

CLINICAL HEMORHEOLOGY AND MICROCIRCULATION
Volume 39, Issue 1-4, Pages 363-373

Publisher

IOS PRESS
DOI: 10.3233/CH-2008-1101

Keywords

erythrocyte protein band 3; protein tyrosine kinases; phosphotyrosine phosphatase; acetylcholinesterase; cytoskeleton; protein kinase C

Ask authors/readers for more resources

The interactions between membrane, peripheral and cytoskeleton proteins are responsible for the maintenance of erythrocyte deformability (EEI) and some of these interactions are modulated by PKC activity. Protein band 3 of the erythrocyte membrane is phosphorylated by phosphotyrosine kinases (PTK) and dephosphorylated by phosphotyrosine phosphatase (PTP). It was previously described by us a signal transduction mechanism that describes a possible pathway connecting an erythrocyte external membrane protein, acetylcholinesterase (AChE), with protein band 3. So how does PKC activity modulate EEI when protein band 3 is phosphorylated or dephosphorylated in absence or presence of AChE effectors? To answer this we used phorbol 12-myristate 13-acetate (PMA) as an activator and chelerythrine chloride as inhibitor of PKC and also band 3 modulators of band 3 phosphorylation degree, in presence and absence of AChE effectors in order to measure in whole blood samples EEI. Our results showed that erythrocyte deformability was significantly (i) decreased by inhibition of PKC, in absence and presence of AChE inhibitor velnacrine (ii) increased with PMA in absence and presence of ACh and (iii) decreased in presence of calpeptin in absence and presence of either chelerythrine or PMA. These results establish dependence between cytoskeleton proteins, PKC activity, band 3 phosphorylation degrees and EEI. Better understanding of those proteins interactions on transduction mechanisms might trigger possible targets for drug action that would modulate EEI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available