4.6 Article

Effects of two alternative representations of ground-motion uncertainty on probabilistic seismic demand assessment of structures

Journal

EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
Volume 37, Issue 1, Pages 61-79

Publisher

WILEY
DOI: 10.1002/eqe.745

Keywords

structural reliability; subset simulation; seismic risk analysis; probabilistic seismic hazard analysis; performance-based design; earthquake engineering; stochastic ground motion

Ask authors/readers for more resources

A probabilistic representation of the entire ground-motion time history can be constructed based on a stochastic model that depends on seismic source parameters. An advanced stochastic simulation scheme known as Subset Simulation can then be used to efficiently compute the small failure probabilities corresponding to structural limit states. Alternatively, the uncertainty in the ground motion can be represented by adopting a parameter (or a vector of parameters) known as the intensity measure (IM) that captures the dominant features of the ground shaking. Structural performance assessment based on this representation can be broken down into two parts, namely, the structure-specific part requiring performance assessment for a given value of the IM, and the site-specific part requiring estimation of the likelihood that ground shaking with a given value of the IM takes place. The effect of these two alternative representations of ground-motion uncertainty on probabilistic structural response is investigated for two hazard cases. In the first case, these two approaches are compared for a scenario earthquake event with a given magnitude and distance. In the second case, they are compared using a probabilistic seismic hazard analysis to take into account the potential of the surrounding faults to produce events with a range of possible magnitudes and distances. The two approaches are compared on the basis of the probabilistic response of an existing reinforced-concrete frame structure, which is known to have suffered shear failure in its columns during the 1994 Northridge Earthquake in Los Angeles, California. Copyright (c) 2007 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available