4.7 Article

Effects of spatial extent on landscape structure and sediment metal concentration relationships in small estuarine systems of the United States' Mid-Atlantic Coast

Journal

LANDSCAPE ECOLOGY
Volume 23, Issue -, Pages 91-106

Publisher

SPRINGER
DOI: 10.1007/s10980-007-9143-1

Keywords

scale; estuarine condition; landscape composition; estuarine sediment metal concentrations; USEPA environmental monitoring and assessment program (EMAP); national land cover dataset (NLCD)

Ask authors/readers for more resources

Prior studies exploring the quantitative relationship between landscape structure metrics and the ecological condition of receiving waters have used a variety of sampling units (e.g., a watershed, or a buffer around a sampling station) at a variety of spatial scales to generate landscape metrics resulting in little consensus on which scales best describe land-water relationships. Additionally, the majority of these studies have focused on freshwater systems and it is not clear whether results are transferable to estuarine and marine systems. We examined how sampling unit scale controls the relationship between landscape structure and sediment metal concentrations, in small estuarine systems in the Mid-Atlantic region of the United States. We varied the spatial extent of the contributing watersheds used to calculate landscape structure and assessed linear relationships between estuarine sediment metal concentrations and the total area of developed and agricultural lands at each scale. Area of developed lands was consistently related to sediment metals while total agricultural land was not. Developed land had strongest associations with lead and copper; weakest with arsenic and chromium; and moderate associations with cadmium, mercury, and zinc. Local (i.e., less than 15-20 km from a sampling station) land uses have a greater impact than more distant land uses on the amount of toxic metals reaching estuarine sediments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available