4.2 Article

Erosion and nutrient loss on sloping land under intense cultivation in southern Vietnam

Journal

GEOGRAPHICAL RESEARCH
Volume 46, Issue 1, Pages 4-16

Publisher

WILEY
DOI: 10.1111/j.1745-5871.2007.00487.x

Keywords

catchment; soil erosion; erosion bridge; GIS; remote sensing; ground cover

Categories

Ask authors/readers for more resources

To help improve the well-being of the local people, a joint Vietnamese-UK team set out to establish a way of estimating soil and nutrient losses under different land management scenarios, using field data extrapolated through remote sensing and GIS, to obtain catchment-wide estimates of the impact of land cover change. Immigration from remote provinces to the Dong Phu District of Binh Phuoc Province, about 120 km north of Ho Chi Minh City, has led to disruption of soil surface stability on easily eroded clayey sandstones, creating rapid nutrient depletion that affects crop yields and siltation in the channel of the Rach Rat river downstream. The poor farmers of the areas see crop yields drop dramatically after two or three years of cultivation due to the fertility decline. Soil loss varies dramatically between wet season and dry season and with ground cover. Erosion bridge measurements showed a mean loss of 85.2 t ha(-1) y(-1) under cassava saplings with cashew nuts, 43.3 t ha(-1) y(-1) on uncultivated land and 41.7 t ha(-1) y(-1) under mature cassava. The rates of erosion were higher than those reported in many other parts of Vietnam, reflecting the high erodibility of the friable sandy soils on the steep side-slopes of the Rach Rat catchment. However, although the actual measurements provide better soil loss data than estimates based on the parameters of soil loss equations, a large number of measurement sites is needed to provide adequate coverage of the crop and slope combinations in this dissected terrain for good prediction using GIS and remote sensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available