4.1 Article

Energetics of naphthynes - Performance of reduced multi-reference coupled-cluster methods for diradicals1

Journal

CANADIAN JOURNAL OF CHEMISTRY
Volume 87, Issue 7, Pages 917-926

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/V09-029

Keywords

didehydronaphthalenes (naphthalynes, naphythynes); coupled-cluster methods; quasi-degeneracy; singlet-triplet splitting; diradicals

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

The energetics of all the possible isomers of the didehydronaphthalene (naphthalyne or naphthyne) diradical has been examined using the reduced multi-reference (RMR) coupled-cluster (CC) method with singles and doubles (RMR CCSD) that employs a modest size MR CISD wave function as an external source of the most important (primary) triples and quadruples to account for nondynamic correlation effects in the presence of quasi-degeneracy, as well as by its perturbatively corrected version for the secondary triples, the RMR CCSD(T) method. The resulting energies are compared with those obtained by the standard single-reference (SR) CCSD and CCSD(T) approaches. In all cases, we used both the cc-pVDZ basis set, as well as its restricted version cc-pVDZ* with deleted p-functions on hydrogens. Once the optimal geometry for each isomer was found, we computed the energy of the lowest-lying singlet and triplet states using the above mentioned CC methods, as well as the implied singlet-triplet splittings. These results enabled us to classify the isomers into three groups according to their stability and to determine, whenever possible, the spin multiplicity of the ground state. Finally, we point out the relationship between the extent of the diradical character of naphthyne isomers, the degree of their MR nature, the distance separating the radical centers, and, finally, the size of the largest doubly-excited cluster amplitude in their CC wave functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available