4.7 Article

An alternative approach to modeling genetic merit of feed efficiency in dairy cattle

Journal

JOURNAL OF DAIRY SCIENCE
Volume 98, Issue 9, Pages 6535-6551

Publisher

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2015-9414

Keywords

Cholesky decomposition; feed efficiency; multiple trait model; residual feed intake

Funding

  1. USDA-NIFA (National Institute of Food and Agriculture, Washington, DC) [2011-68004-30340]

Ask authors/readers for more resources

Genetic improvement of feed efficiency (FE) in dairy cattle requires greater attention given increasingly important resource constraint issues. A widely accepted yet occasionally contested measure of FE in dairy cattle is residual feed intake (RFI). The use of RFI is limiting for several reasons, including interpretation, differences in recording frequencies between the various component traits that define RFI, and potential differences in genetic versus nongenetic relationships between dry matter intake (DMI) and FE component traits. Hence, analyses focusing on DMI as the response are often preferred. We propose an alternative multiple-trait (MT) modeling strategy that exploits the Cholesky decomposition to provide a potentially more robust measure of FE. We demonstrate that our proposed FE measure is identical to RFI provided that genetic and nongenetic relationships between DMI and component traits of FE are identical. We assessed both approaches (MT and RFI) by simulation as well as by application to 26,383 weekly records from 50 to 200 d in milk on 2,470 cows from a dairy FE consortium study involving 7 institutions. Although the proposed MT model fared better than the RFI model when simulated genetic and nongenetic associations between DMI and FE component traits were substantially different from each other, no meaningful differences were found in predictive performance between the 2 models when applied to the consortium data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available