4.5 Article

Sand and silty-sand soil stabilization using bacterial enzyme-induced calcite precipitation (BEICP)

Journal

CANADIAN GEOTECHNICAL JOURNAL
Volume 56, Issue 6, Pages 808-822

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/cgj-2018-0191

Keywords

shear strength; bio-stabilization; enzyme; bacteria

Ask authors/readers for more resources

This paper examines the bio-derived stabilization of sand-only or sand-plus-silt soils using an extracted bacterial enzyme application to achieve induced calcite precipitation (ICP). As compared to conventional microbial induced calcite precipitation (MICP) methods, which use intact bacterial cells, this strategy that uses free urease catalysts to secure bacterial enzyme-induced calcite precipitation (BEICP) appears to offer an improved means of bio-stabilizing silty-sand soils as compared to that of MICP processing. Several benefits may possibly be achieved with this BEICP approach, including bio-safety, environmental, and geotechnical improvements. Notably, the BEICP bio-stabilization results presented in this paper demonstrate (i) higher rates of catalytic urease activity, (ii) a wider range of application with sand-plus-silt soil applications bearing low-plasticity properties, and (iii) the ability to retain higher levels of soil permeability after BEICP processing. Comparative BEICP versus MICP results for sand-only systems are presented, along with BEICP-based results for stabilized soil mixtures at 90: 10 and 80: 20 percentile sand: silt ratios. This BEICP method's ability to obtain unconfined compressive strength results in excess of 1000 kPa with sand-plus-silt soil mixtures is particularly noteworthy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available