4.7 Article

Relativistic jets and long-duration gamma-ray bursts from the birth of magnetars

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 383, Issue 1, Pages L25-L29

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1745-3933.2007.00403.x

Keywords

magnetic fields; MHD; stars : neutron; supernovae : general; stars : winds, outflows; gamma-rays : bursts

Ask authors/readers for more resources

We present time-dependent axisymmetric magnetohydrodynamic simulations of the interaction of a relativistic magnetized wind produced by a proto-magnetar with a surrounding stellar envelope, in the first similar to 10 s after core collapse. We inject a super-magnetosonic wind with E = 10(51) erg s(-1) into a cavity created by an outgoing supernova shock. A strong toroidal magnetic field builds up in the bubble of plasma and magnetic field that is at first inertially confined by the progenitor star. This drives a jet out along the polar axis of the star, even though the star and the magnetar wind are each spherically symmetric. The jet has the properties needed to produce a long-duration gamma-ray burst (GRB). At similar to 5 s after core bounce, the jet has escaped the host star and the Lorentz factor of the material in the jet at large radii similar to 10(11) cm is similar to that in the magnetar wind near the source. Most of the spindown power of the central magnetar escapes via the relativistic jet. There are fluctuations in the Lorentz factor and energy flux in the jet on a similar to 0.01-0.1 s time-scale. These may contribute to variability in GRB emission (e.g. via internal shocks).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available