4.6 Article

Star formation in accretion discs: from the Galactic center to active galactic nuclei

Journal

ASTRONOMY & ASTROPHYSICS
Volume 477, Issue 2, Pages 419-435

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20078191

Keywords

galaxies : quasars : general; Galaxy : center; accretion; accretion disks; galaxies : Seyfert

Ask authors/readers for more resources

Context. Keplerian accretion discs around massive black holes (MBHs) are gravitationally unstable beyond a few hundredths of a parsec, and they should collapse to form stars. It has indeed been shown recently that an accretion/star formation episode took place a few million years ago in the Galactic center (GC). This raises the question of how the disc can survive in AGN and quasars and continue to transport matter towards the black hole. Aims. We study the accretion/star formation process in quasars and AGN with one aim in mind: to show that a spectrum similar to the observed one can be produced by the disc. Methods. We compute models of stationary accretion discs that are either continuous or clumpy. Continuous discs must be maintained in a state of marginal stability so that the rate of star formation remains modest and the disc is not immediately destroyed. The disc then requires additional heating and additional transport of angular momentum. In clumpy discs, the momentum transport is provided by cloud interactions. Results. Non-viscous heating can be provided by stellar illumination, but in the case of continuous discs, even momentum transport by supernovae is insufficient for sustaining a marginal state, except at the very periphery of the disc. In clumpy discs it is possible to account for the required accretion rate through interactions between clouds, but this model is unsatisfactory because its parameters are tightly constrained without any physical justification. Conclusions. Finally one must appeal to non-stationary discs with intermittent accretion episodes like those that occurred in the GC, but such a model is probably not applicable either to luminous high redshift quasars or to radio-loud quasars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available