4.6 Article

Magnetic processes in a collapsing dense core - I. Accretion and ejection

Journal

ASTRONOMY & ASTROPHYSICS
Volume 477, Issue 1, Pages 9-24

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20078309

Keywords

magnetohydrodynamics (MHD); instabilities; ISM : kinematics and dynamics; ISM structure; ISM clouds

Ask authors/readers for more resources

Context. TO understand the star formation process, it is important to Study the collapse of a prestellar dense core. Aims. We investigate the effect of the magnetic field during the first collapse up to the formation of the first core, focusing particularly on the magnetic braking and the launching of outflows. Methods. We perform 3D AMR high resolution numerical simulations of a magnetically supercritical collapsing dense core using the RAMSES MHD code and develop semi-analytical models that we compare with the numerical results. Results. We Study in detail the Various profiles within the envelope of the collapsing core for various magnetic field strengths. Even modest values of magnetic field strength modify the collapse significantly. This is largely due to the amplification of the radial and toroidal components of the magnetic field by the differential motions within the collapsing core. For a weak magnetic intensity corresponding to an initial mass-to-flux over critical mass-to-flux ratio, mu equals 20 a centrifugally supported disk forms. The strong differential rotation triggers the growth of a slowly expanding magnetic tower. For higher magnetic field strengths corresponding to mu = 2, the collapse occurs primarily along the field lines, therefore delivering weaker angular momentum into the inner part whereas at the same time, strong magnetic braking occurs. As a consequence no centrifugally supported disk forms. An outflow is launched from the central thermally supported core. Detailed comparisons with existing analytical predictions indicate that it is magneto-centrifugally driven. Conclusions. For cores having a mass-to-flux over critical mass-to-flux radio mu < 5, the magnetic field appears to have a significant impact. The collapsing envelope is denser and flatter than in the hydrodynamical case and no centrifugally supported disk forms. For values mu < 20, the magnetic field drastically modifies the disk evolution. In a companion paper, the influence of the magnetic field on the dense core fragmentation is studied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available