4.5 Article

Riboflavin-binding protein is a novel bitter inhibitor

Journal

CHEMICAL SENSES
Volume 33, Issue 1, Pages 57-63

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/chemse/bjm062

Keywords

bitter inhibitor; caffeine; quinine; riboflavin-binding protein

Ask authors/readers for more resources

Riboflavin-binding protein (RBP) from chicken egg, which was recently reported to be a selective sweet inhibitor for protein sweeteners, was also found to be a bitter inhibitor. RBP elicited broadly tuned inhibition of various bitter substances including quinine-HCl, naringin, theobromine, caffeine, glycyl-L-phenylalanine (Gly-Phe), and denatonium benzoate, whereas several other proteins, such as ovalbumin (OVA) and beta-lactoglobulin, were ineffective in reducing bitterness of these same compounds. Both the bitter tastes of quinine and caffeine were reduced following an oral prerinse with RBP. It was found that RBP binds to quinine but not to caffeine, theobromine, naringin, and Gly-Phe. However, the binding of RBP to quinine was probably not responsible for the bitter inhibition because OVA bound to quinine as well as RBP. Based on these results, it is suggested that the bitter inhibitory effect of RBP is the consequence of its ability to interact with taste receptors rather than because it interacts with the bitter tastants themselves. RBP may have practical uses in reducing bitterness of foods and pharmaceuticals. It may also prove a useful tool in studies of mechanisms of bitter taste.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available