4.5 Article

Mechanism of R-loop formation at immunoglobulin class switch sequences

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 28, Issue 1, Pages 50-60

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.01251-07

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM056984] Funding Source: Medline
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM056984] Funding Source: NIH RePORTER

Ask authors/readers for more resources

R-loops have been described in vivo at the immunoglobulin class switch sequences and at prokaryotic and mitochondrial origins of replication. However, the biochemical mechanism and determinants of R-loop formation are unclear. We find that R-loop formation is nearly eliminated when RNase T-1 is added during transcription but not when it is added afterward. Hence, rather than forming simply as an extension of the RNA-DNA hybrid of normal transcription, the RNA must exit the RNA polymerase and compete with the nontemplate DNA strand for an R-loop to form. R-loops persist even when transcription is done in Li+ or Cs+, which do not support G-quartet formation. Hence, R-loop formation does not rely on G-quartet formation. R-loop formation efficiency decreases as the number of switch repeats is decreased, although a very low level of R-loop formation occurs at even one 49-bp switch repeat. R-loop formation decreases sharply as G clustering is reduced, even when G density is kept constant. The critical level for R-loop formation is approximately the same point to which evolution drove the G clustering and G density on the nontemplate strand of mammalian switch regions. This provides an independent basis for concluding that the primary function of G clustering, in the context of high G density, is R-loop formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available