4.4 Article

Intra-Event Spatial Correlations for Cumulative Absolute Velocity, Arias Intensity, and Spectral Accelerations Based on Regional Site Conditions

Journal

BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
Volume 103, Issue 2A, Pages 1117-1129

Publisher

SEISMOLOGICAL SOC AMER
DOI: 10.1785/0120120185

Keywords

-

Funding

  1. Hong Kong Research Grants Council [620311]
  2. Hong Kong Research Grants Council [620311]

Ask authors/readers for more resources

Spatial correlations of ground-motion intensity measures (IMs) are essential for seismic analysis of spatially distributed systems. In this paper, geostatistical analysis is conducted to calculate the spatial correlations for cumulative absolute velocity (CAV), Arias intensity (Ia), and spectral accelerations (SA) using a total number of more than 1500 earthquake records from nine recent earthquakes occurred in Taiwan, California, and Japan. The results indicate that the spatial correlations for these IMs are closely related to the regional site conditions, and they can be predicted based on the spatial correlations of shear-wave velocity in the top 30 m (VS30). In general, an IM recorded from a relatively homogeneous regional site condition tends to have a larger spatial correlation range than that from a heterogeneous site condition. Due to their intrinsic similarity to represent the integration of acceleration time histories, CAV and Ia have similar spatial correlation coefficients. Besides, the range of spatial correlation of SA generally increases as the spectral period increases. Simple predictive equations are proposed in this study to quantify the spatial correlations of CAV, Ia, and SA based on regional site conditions. Methods for data correction are also proposed to eliminate artificial correlations due to biased distance scaling and VS30 estimation in the database. Finally, Monte Carlo method is used to generate spatially distributed IMs. The results demonstrate that the annual frequency of exceedance curves for spatially distributed IMs differ significantly if different ranges of spatial correlations are used.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available