4.5 Article

Intracellular application of TNF-alpha impairs cell to cell communication via gap junctions in glioma cells

Journal

JOURNAL OF NEURO-ONCOLOGY
Volume 86, Issue 2, Pages 143-152

Publisher

SPRINGER
DOI: 10.1007/s11060-007-9462-8

Keywords

glioma cells; primary astrocytes; GJIC; Cx43; itracellularly applied TNF-alpha; TNFR1

Ask authors/readers for more resources

Human gliomas are the most common class of brain neoplasm. In order to better characterize their response to inflammation, we evaluated the influence of tumor necrosis factor alpha (TNF-alpha) on the coupling behaviour and the membrane resting potential (MRP) of glioma cells (F98 glioma cell line) compared to primary astrocytes. In contrast to cultured primary astrocytes which exhibited a profound inhibition of gap junction mediated intercellular communication (GJIC), extracellular exposure of TNF-alpha to F98 glioma cells gained no effect on the functional coupling. Whereas, intracellular application of TNF-alpha into the glioma cells elicited similar effects as those found in primary astrocytes indicating a compromised accessability of the TNF-alpha receptor in F98 cells. Western blotting, immunocytochemical staining and real time RT PCR analysis revealed a differential expression and distribution of TNF-alpha receptor 1 (TNFR1) in the glioma cells. Connexin 43 (Cx43) is the major astrocytic gap junction protein which when phosphorylated has been shown to reveal altered gating properties. Here we show that TNF-alpha increases the level of phosphorylated Cx43 in primary astrocytes but not in the F98 glioma cells. Our observations could account for the decreased regulatory effects of TNF-alpha on GJIC of F98 glioma cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available