4.5 Article

Bone-like matrix formation on magnesium and magnesium alloys

Journal

Publisher

SPRINGER
DOI: 10.1007/s10856-007-3172-9

Keywords

-

Ask authors/readers for more resources

Mg metal and its alloys have promise as a biocompatible, degradable biomaterials. This work evaluates the potential of in vitro cell culture work with osteoblast-like cells on Mg based materials, and investigates cell differentiation and growth on Mg alloyed with various non-toxic or low-toxicity elements. Mg based substrates support the adhesion, differentiation and growth of stromal cells towards an osteoblast-like phenotype with the subsequent production of a bone like matrix under in vitro conditions. No significant difference in the final tissue layer is observed on pure Mg, an AZ21 alloy or a 0.5 wt% Ca alloy. Only a 0.8 wt% Ca alloy which shows complete structural disintegration shows minimal cell growth. Due to association of non-soluble degradation products formed when Mg is incubated in physiological-like fluid, mass changes typically used to report Mg degradation are not viable estimates of degradation. Methods quantifying the time dependent change in the mechanical integrity of samples as a function of incubation time are required for a proper assessment of Mg degradation. We conclude that in vitro cell culture of bone cells on Mg substrates is expected to be a viable screening technique to assess the relative biological activity of Mg-based materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available