4.4 Article

Phosphorus sorbing materials: Sorption dynamics and physicochemical characteristics

Journal

JOURNAL OF ENVIRONMENTAL QUALITY
Volume 37, Issue 1, Pages 174-181

Publisher

WILEY
DOI: 10.2134/jeq2007.0148

Keywords

-

Ask authors/readers for more resources

The effectiveness of various management practices to reduce phosphorus (P) loss from soil to water can potentially be improved by using by-product materials that have the capacity to sorb phosphorus. This study evaluated the P sorption and desorption potential, and the physicochemical characteristics of various phosphorus sorbing materials. Twelve materials were selected and P sorption potentials ranged between 66 and 990 mg kg(-1). Iron, and calcium drinking water treatment esiduals (DWTRs), a magnesium fertilizer by-product, aluminum, and humate materials all removed substantial amounts of P from solution and desorbed little. Humate had the highest maximum P sorption capacity (S-max). Materials which had a low equilibrium P concentration (EPC0) and a high S-max included aluminum and humate by-products. In a kinetic study, the Fe-DWTR, Ca-DWTR, aluminum, and magnesium by-product materials all removed P (to relatively low levels) from solution within 4 h. Phosphorus fractionation suggests that most materials contained little or no P that was readily available to water. Sand materials contained the greatest P fraction associated with fulvic and humic acids. In general, materials (not Ca-DWTR) and magnesium by-product were composed of sand-sized particles. There were no relationships between particle size distributions and P sorption in materials other than sands. The Ca- and Fe-DWTR, and magnesium by-product also contained plant nutrients and thus, may be desirable as soil amendments after being used to sorb P. Further, using Ca-DWTRs and Fe-DWTRs as soil amendments may also increase soil cation exchange and water holding capacity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available