4.5 Article

Solitary waves in soybean induced by localized thermal stress

Journal

PLANT SIGNALING & BEHAVIOR
Volume 3, Issue 4, Pages 224-228

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/psb.3.4.5586

Keywords

Action potential; plant electrophysiology; electrical signaling; localized heat stress; excitability

Funding

  1. National Science Foundation [DMR-0521611]
  2. NASA [NAG8-1888]

Ask authors/readers for more resources

Action potentials in higher plants are believed to be the information carriers in intercellular and intracellular communication in the presence of an environmental stressor. Plant electrophysiologists have recorded long distance electrical signaling in higher plants during the last two hundred years. Reproducing the duration, speed of propagation, and the shape of the action potential is challenging. Early measurements revealed that the speed of action potential propagation in plants is extremely slow - from 0.1 mm/s to 20 cm/s, although many faster plant responses to stress have been recorded as well. We hypothesized that this discrepancy is most likely due to the artifacts of aliasing from slow registration systems. In this study, we employ real time measurements using modern data acquisition techniques to detect ultra fast action potentials in green plants induced by localized heat stress. Thermal shock or heat stress is the most common environmental stress. Based on more sophisticated measuring techniques, we show that plants transmit solitary waves and that the speed of action potential propagation in green plants is similar to the speed of action potentials in mammalians, varying from a few meters per second up to 105 m/s. Possible pathways for electrical signal propagation in vascular plants are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available