4.7 Article

Poly(gamma-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: Potential for an AIDS vaccine

Journal

JOURNAL OF MEDICAL VIROLOGY
Volume 80, Issue 1, Pages 11-19

Publisher

WILEY
DOI: 10.1002/jmv.21029

Keywords

nanoparticle; antigen delivery; adjuvant; dendritic cell; HIV-1

Categories

Ask authors/readers for more resources

Antigen delivery systems using polymeric nanoparticles are of special interest as stable protein-based antigen carriers. In the present study, novel biodegradable poly(,gamma-glutamic acid) (gamma-PGA) nanoparticles were examined for their antigen delivery and immunostimulatory activities in vitro and in vivo. The uptake of ovalbumin by dendritic cells was markedly enhanced by gamma-PGA nanoparticles, and the ovalbumin was gradually released from gamma-PGA nanoparticles into the cells. In addition, gamma-PGA nanoparticles appeared to have great potential as an adjuvant, because they could induce the maturation of dendritic cells. Although not only ovalbumin-encapsulating nanoparticles (OVA-NPs) but also a simple mixture of ovalbumin and nanoparticles induced dendritic cell maturation, the only dendritic cells exposed to OVA-NPs could strongly activate antigen-specific interferon (IFN)-gamma-producing T cells. Subcutaneous immunization of mice with human immunodeficiency virus type 1 (HIV-1) p24-encapsulating nanoparticles activated antigen-specific IFN-gamma-producing T cells in spleen cells and induced p24-specific serum antibodies, as compared to immunization with p24 alone. Like ovalbumin, a mixture of p24 and nanoparticles also induced antigen-specific serum antibodies but did not activate IFN-gamma-producing T cells in spleen cells, suggesting that nanoparticles play a critical role in inducing cellular immune responses. Furthermore, gamma-PGA nanoparticles had a capacity comparable to that of the complete Freund's adjuvant (CFA) in inducing p24-specific serum antibody. However, unlike CFA, they predominantly activated p24-specific IFN-gamma-producing T cells. Thus, gamma-PGA nanoparticles encapsulating various antigens may have great potential as novel and efficient protein-based vaccines against infectious diseases, including HIV-1 infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available