4.7 Article

The Norwegian IPY-THORPEX: Polar Lows and Arctic Fronts during the 2008 Andoya Campaign

Journal

BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
Volume 92, Issue 11, Pages 1443-+

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2011BAMS2901.1

Keywords

-

Funding

  1. Norwegian Research Council [175992/S30]
  2. Deutsches Zentrum fur Luft- und Raumfahrt (DLR)
  3. European Fleet for Airborne Research (EUFAR)

Ask authors/readers for more resources

From a weather forecasting perspective, the Arctic poses particular challenges for mainly two reasons: 1) The observational data are sparse and 2) the weather phenomena responsible for severe weather, such as polar lows, Arctic fronts, and orographic influences on airflow, are poorly resolved and described by the operational numerical weather prediction (NWP) models. The Norwegian International Polar Year (IPY)The Observing System Research and Predictability Experiment (THORPEX) project (2007-10) sought to significantly improve weather forecasts of these phenomena through a combined modeling and observational effort. The crux of the observational effort was a 3-week international field campaign out of northern Norway in early 2008, combining airborne and surface-based observations. The main platform of the field campaign was the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) research aircraft Falcon, equipped with lidar systems for profiling of aerosols, humidity, and wind, in addition to in situ measurements and dropsondes. A total of 12 missions were flown, yielding detailed observations of polar lows, Arctic fronts, and orographic low-level jets near Spitsbergen, the coast of northern Norway, and the east coast of Greenland. The lidar systems enabled exceptionally detailed measurements of orographic jets caused by the orography of Spitsbergen. Two major polar low developments over the Norwegian Sea were captured during the campaign. In the first polar low case, three flights were carried out, providing a first-ever probing of the full life cycle of a polar low. Targeting observations by the aircraft in sensitive areas led to improvements in predicted track and intensity of the polar low. Here highlights from the field campaign, as well as from ongoing follow-up investigations, are presented. Highlights from the development of a new limited-area model ensemble prediction system for the Arctic, as well as an exploitation of new satellite data [Infrared Atmospheric Sounding Interferometer (IASI) data], are also included. (Page 1443)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available