4.2 Article

Studies on interfacial interactions of TiO2 nanoparticles with bacterial cells under light and dark conditions

Journal

BULLETIN OF MATERIALS SCIENCE
Volume 37, Issue 3, Pages 371-381

Publisher

INDIAN ACAD SCIENCES
DOI: 10.1007/s12034-014-0680-3

Keywords

Cytotoxicity; dark; FT-IR; FT Raman; XPS; fluorescence spectroscopy

Ask authors/readers for more resources

The probable underlying mechanism(s) of bacterial cell-TiO2 nanoparticles (TiO2 NPs) interaction in the absence of photo-irradiation has been less studied since most of the prior cytotoxicity studies focused on irradiated TiO2. The present study draws attention to the possible role of cell surface-TiO2 NP interactions under dark conditions, through an array of spectroscopic and microscopic investigations. A dominant freshwater bacterial isolate, Bacillus licheniformis, which interacted with environmentally relevant concentrations of TiO2 NPs (1 mu g/mL), was analysed and compared under both light and dark conditions. Aggregation of cells upon NP interaction and adsorption of NPs onto the cell membrane was evident from the scanning electron micrographs under both light and dark conditions. The FT-IR and FT Raman spectra suggested stress response of bacterial cells by elevated protein and polysaccharide content in the cell NP interaction. The Xray photoelectron spectroscopic data substantiated the reduction of titanium from Ti(IV) to Ti(III) species which might have contributed to the redox interactions on the cell surface under light as well as dark conditions. The internalization of NPs in the cytoplasm were obvious from the transmission electron micrographs. The consequent cell death/damage was confirmed through fluorescence spectroscopy and microscopy. To conclude, the current study established the substantial role of interfacial interactions in cytotoxicity of the TiO2 NPs irrespective of the irradiation conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available