4.4 Article

Enantiomeric selectivity in behavioural and electrophysiological responses of Aedes aegypti and Culex quinquefasciatus mosquitoes

Journal

BULLETIN OF ENTOMOLOGICAL RESEARCH
Volume 101, Issue 5, Pages 541-550

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0007485311000162

Keywords

mosquito; 1-octen-3-ol; enantiomer; electrophysiology; behaviour

Categories

Funding

  1. DTI [J0018 K]
  2. Biotechnology and Biological Sciences Research Council (BBSRC) of the United Kingdom
  3. Linnaeus-program Insect Chemical Ecology, Ethology and Evolution IC-E3

Ask authors/readers for more resources

1-Octen-3-ol is a kairomone for many haematophagous insects including mosquitoes. Numerous studies have examined the effects of racemic 1-octen-3-ol; however, few studies have investigated the role of individual enantiomers in relation to mosquito attraction. In the present study, we investigated the behavioural and electrophysiological responses of two mosquito species, Aedes aegypti and Culex quinquefasciatus, to individual enantiomers and mixtures of 1-octen-3-ol, employing a laboratory Y-tube olfactometer and single sensillum recordings. The olfactory receptor neurons of both Ae. aegypti and Cx. quinquefasciatus had a significantly higher response to the (R)-1-octen-3-ol enantiomer compared to the (S)-1-octen-3-ol enantiomer at 10(-9) g mu l(-1) to 10(-6) g mu l(-1). Behaviourally, Ae. aegypti was more responsive to the (R)-1-octen-3-ol enantiomer, showing an increase in flight activity and relative attraction compared to Cx. quinquefasciatus. The (R)-1-octen-3-ol enantiomer caused an increase in activation for Cx. quinquefasciatus. However, the most notable effect was from an (R: S)-1-octen-3-ol mixture (84: 16) that caused significantly more mosquitoes to sustain their flight and reach the capture chambers (demonstrated by a reduced non-sustained flight activity), suggesting that it may have a behaviourally excitatory effect. For Cx. quinquefasciatus, a reduced relative attraction response was also observed for all treatments containing the (R)-1-octen-3-ol enantiomer, either on its own or as part of a mixture, but not with the (S)-1-octen-3-ol enantiomer. This is the first time enantiomeric selectivity has been shown for Ae. aegypti using electrophysiology in vivo. The implications of these results for exploitation in mosquito traps are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available