4.7 Article

Heat mitigation strategies in winter and summer: Field measurements in temperate climates

Journal

BUILDING AND ENVIRONMENT
Volume 81, Issue -, Pages 309-319

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2014.07.010

Keywords

Vegetation and water body; Summer and winter; Courtyard; Temperate climates; Urban heat island effect; Park cool effect

Ask authors/readers for more resources

Natural elements such as vegetation and water bodies may help reduce heat in urban spaces in summer or in hot climates. This effect, however, has rarely been studied during cold seasons. This paper briefly studies the effect of vegetation and water in summer and more comprehensively in winter. Both studies are done in courtyards on two university campuses in temperate climates. A scale model experiment with similar materials supports the previous studies. The summer study is done in Portland (OR), USA, and the winter study (along with the scale model) in Delft, the Netherlands. The summer study shows that a green courtyard at most has a 4.7 degrees C lower air temperature in the afternoon in comparison with a bare one. The winter study indicates that the air temperature above a green roof is higher than above a white gravel roof. It also shows that, although a 'black' courtyard has higher air temperatures for a few hours on sunny winter days, a courtyard with a water pond and with high amounts of thermal mass on the ground has a warmer and more constant air temperature in general. Both the summer and winter studies show that parks in cities have a lower and more constant air temperature compared to suburbs, both in summer and winter. The scale model also demonstrates that although grass has a lower albedo than the used gravel, it can provide a cooler environment in comparison with gravels and black roof.(1) (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available