4.7 Article

Inverse modeling of simplified hygrothermal building models to predict and characterize indoor climates

Journal

BUILDING AND ENVIRONMENT
Volume 68, Issue -, Pages 87-99

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2013.06.001

Keywords

Inverse modeling; Parameter identification; Simplified building model; Indoor climate prediction; Monumental buildings

Funding

  1. European Commission through the EU [226973, FP7-ENV-2008-1]

Ask authors/readers for more resources

Computational research on monumental buildings yields three problems regarding currently used detailed building models: tedious modeling, relatively long simulation run times, difficulties to characterize a building by its model parameters. A new simplified hygrothermal building model in state space form is presented with an inverse modeling technique to identify its parameters. Based on a literature review, 10 thermal models and 5 hygric models were developed. An optimization routine was used to fit the output of the models to long term hourly measurements of a typical monumental building zone and to a fictive indoor climate that was simulated by a validated simulation tool. The model performance was assessed by three criteria and the best models were selected. The validation of the selected thermal and hygric models consisted of fitting the models' output to indoor climate measurements of four monumental building zones, a residual analysis and parameter analysis. The results show that the simplified hygrothermal model is capable of reproducing most indoor climates accurately. Moreover, the state space model results in fast simulations: 100 years with hourly samples was simulated in 0.45 s on an ordinary computer (i5-processor). Characterization and validation of the parameter values are challenging and requires additional measurements and research. (c) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available