4.7 Article

Assessment of climate change impact on residential building heating and cooling energy requirement in Australia

Journal

BUILDING AND ENVIRONMENT
Volume 45, Issue 7, Pages 1663-1682

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2010.01.022

Keywords

Residential building energy; Climate change; Impact assessment; Energy ratings

Ask authors/readers for more resources

This study investigated the potential impact of climate change on the heating and cooling (H/C) energy requirements of residential houses in five regional climates varying from cold to hot humid in Australia. Nine General Circulation Models (GCMs) under three carbon emission scenarios were applied to project the local climate. It was found that significant climate change impact on H/C energy requirements may occur within the lifespan of existing housing stock. The total H/C energy requirement of newly constructed 5 star houses is projected to vary significantly in the range of -26% to 101% by 2050 and -48% to 350% by 2100 given the A1B, A1FI and 550 ppm stabilisation emission scenarios, dependent on the existing regional climate. In terms of percentage change, houses in an H/C balanced temperate climate such as Sydney is found to be the most sensitive to climate change, potentially posing more pressures on the capacity of local energy supply. It was also found that energy efficient or high star rating houses may experience less absolute changes in energy requirement. However, they appear to experience higher percentage changes in the total H/C energy requirement. Especially in the regions with an H/C balanced temperate climate such as Sydney, the increase in the total H/C energy requirement is projected up to 120% and 530% for a 7 star house when the global temperature increases 2 degrees C and 5 degrees C respectively. The high sensitivity to global warming may need to be considered in the planning of future energy requirement for energy efficient buildings. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available