4.7 Article

Using genetic algorithms and linear regression analysis for private housing demand forecast

Journal

BUILDING AND ENVIRONMENT
Volume 43, Issue 6, Pages 1171-1184

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2007.02.017

Keywords

forecasting; housing; demand; supply; private sector; models; genetic algorithm

Ask authors/readers for more resources

An accurate prediction of prospective construction supply and demand, especially the private residential market, is paramount important to policy makers, as it could help formulate strategies to cultivate/stabilize the economy and satisfy the social needs (at macro level). Despite that, a realistic prediction of future private residential demand is never an easy task, as it is governed by a number of social and economic factors. In this paper, four leading indicator models are developed and compared for directly forecasting Hong Kong private sector residential demand. These comprise a (i) Linear Regression Analysis (LRA) model, (ii) Genetic Algorithms (GA) model, (iii) GA-LRA model, where LRA is used to select the indicator variables; and (iv) GA-LRA model with Adaptive Mutation Rate (AMR) to reduce the likelihood of local optima. The findings indicate that the GA-LRA model with AMR provides the most accurate forecasts and over a longer time horizon. In providing a range of possible forecasts, the model also provides an opportunity for the decision-maker to exercise judgment in selecting the most appropriate forecasts. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available