3.8 Article

Path Planning of Unmanned Aerial Vehicles using B-Splines and Particle Swarm Optimization

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.36917

Keywords

-

Funding

  1. Air Force Office of Special Research Labs [FA9550-05-1-0384]

Ask authors/readers for more resources

Military operations are turning to more complex and advanced automation technologies for minimum risk and maximum efficiency. Acritical piece to this strategy is unmanned aerial vehicles. Unmanned aerial vehicles require the intelligence to safely maneuver along a path to an intended target and avoiding obstacles such as other aircrafts or enemy threats. This paper presents a unique three-dimensional path planning problem formulation and solution approach using particle swarm optimization. The problem formulation was designed with three objectives: 1) minimize risk owing to enemy threats, 2) minimize fuel consumption incurred by deviating from the original path, and 3) fly over defined reconnaissance targets. The initial design point is defined as the original path of the unmanned aerial vehicles. Using particle swarm optimization, alternate paths are generated using B-spline curves, optimized based on the three defined objectives. The resulting paths can be optimized with a preference toward maximum safety, minimum fuel consumption, or target reconnaissance. This method has been implemented in a virtual environment where the generated alternate paths can be visualized interactively to better facilitate the decision-making process. The problem formulation and solution implementation is described along with the results from several simulated scenarios demonstrating the effectiveness of the method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available