4.7 Article

Changes in CB1 and CB2 receptors in the post- mortem cerebellum of humans affected by spinocerebellar ataxias

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 171, Issue 6, Pages 1472-1489

Publisher

WILEY-BLACKWELL
DOI: 10.1111/bph.12283

Keywords

cannabinoids; endocannabinoid system; CB1 and CB2 receptors; cerebellum; Purkinje neurons; spinocerebellar ataxias

Funding

  1. MICINN [SAF2009-11847, SAF2010-16706]
  2. CIBERNED [CB06/05/0089]
  3. Fundacion Eugenio Rodriguez Pascual
  4. FPI Program-Ministry of Science
  5. Ministry of Science

Ask authors/readers for more resources

Background and PurposeSpinocerebellar ataxias (SCAs) are a family of chronic progressive neurodegenerative diseases, clinically and genetically heterogeneous, characterized by loss of balance and motor coordination due to degeneration of the cerebellum and its afferent and efferent connections. Unlike other motor disorders, the possible role of changes in the endocannabinoid system in the pathogenesis of SCAs has not been investigated. Experimental ApproachThe status of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2) receptors in the post-mortem cerebellum of SCA patients and controls was investigated using immunohistochemical procedures. Key ResultsImmunoreactivity for the CB1 receptor, and also for the CB2 receptor, was found in the granular layer, Purkinje cells, neurons of the dentate nucleus and areas of white matter in the cerebellum of SCA patients at levels notably higher than controls. Double-labelling procedures demonstrated co-localization of CB1 and, in particular, CB2 receptors with calbindin, supporting the presence of these receptors in Purkinje neurons. Both receptors also co-localized with Iba-1 and glial fibrillary acidic protein in the granular layer and white matter areas, indicating that they are present in microglia and astrocytes respectively. Conclusions and ImplicationsOur results demonstrate that CB1 and CB2 receptor levels are significantly altered in the cerebellum of SCA patients. Their identification in Purkinje neurons, which are the main cells affected in SCAs, as well as the changes they experienced, suggest that alterations in endocannabinoid receptors may be related to the pathogenesis of SCAs. Therefore, the endocannabinoid system could provide potential therapeutic targets for the treatment of SCAs and its progression. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available