4.7 Article

Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 167, Issue 1, Pages 109-127

Publisher

WILEY
DOI: 10.1111/j.1476-5381.2012.01967.x

Keywords

ginsenoside-Rp1; platelet; GPVI; tyrosine-phosphorylation; PI3K; thrombus

Funding

  1. National Research Foundation of Korea (NRF)
  2. Ministry of Education, Science and Technology [2010-0022223]
  3. National Research Foundation of Korea [2011-0016397, 2010-0022223] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

BACKGROUND AND PURPOSE Ginsenosides are the main constituents for the pharmacological effects of Panax ginseng. Such effects of ginsenosides including cardioprotective and anti-platelet activities have shown stability and bioavailability limitations. However, information on the anti-platelet activity of ginsenoside-Rp1 (G-Rp1), a stable derivative of ginsenoside-Rg3, is scarce. We examined the ability of G-Rp1 to modulate agonist-induced platelet activation. EXPERIMENTAL APPROACH G-Rp1 in vitro and ex vivo effects on agonist-induced platelet-aggregation, granule-secretion, [Ca2+]i mobilization, integrin-aIIb beta 3 activation were examined. Vasodilator-stimulated phosphoprotein (VASP) and MAPK expressions and levels of tyrosine phosphorylation of the glycoprotein VI (GPVI) signalling pathway components were also studied. G-Rp1 effects on arteriovenous shunt thrombus formation in rats or tail bleeding time and ex vivo coagulation time in mice were determined. KEY RESULT G-Rp1 markedly inhibited platelet aggregation induced by collagen, thrombin or ADP. While G-Rp1 elevated cAMP levels, it dose-dependently suppressed collagen-induced ATP-release, thromboxane secretion, p-selectin expression, [Ca2+]i mobilization and aIIb beta 3 activation and attenuated p38MAPK and ERK2 activation. Furthermore, G-Rp1 inhibited tyrosine phosphorylation of multiple components (Fyn, Lyn, Syk, LAT, PI3K and PLC?2) of the GPVI signalling pathway. G-Rp1 inhibited in vivo thrombus formation and ex vivo platelet aggregation and ATP secretion without affecting tail bleeding time and coagulation time, respectively. CONCLUSION AND IMPLICATIONS G-Rp1 inhibits collagen-induced platelet activation and thrombus formation through modulation of early GPVI signalling events, and this effect involves VASP stimulation, and ERK2 and p38-MAPK inhibition. These data suggest that G-Rp1 may have therapeutic potential for the treatment of cardiovascular diseases involving aberrant platelet activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available