4.7 Article

Pharmacological characterization of rat amylin receptors: implications for the identification of amylin receptor subtypes

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 166, Issue 1, Pages 151-167

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1476-5381.2011.01717.x

Keywords

adrenomedullin; adrenomedullin 2; amylin; area postrema; calcitonin; CGRP; IAPP; intermedin; receptor activity-modifying protein; RAMP

Funding

  1. University of Auckland Early Career Research Excellence Award
  2. Maurice and Phyllis Paykel Trust
  3. New Zealand Lotteries Commission (Health)

Ask authors/readers for more resources

BACKGROUND AND PURPOSE Amylin (Amy) is an important glucoregulatory peptide and AMY receptors are clinical targets for diabetes and obesity. Human (h) AMY receptor subtypes are complexes of the calcitonin (CT) receptor with receptor activity-modifying proteins (RAMPs); their rodent counterparts have not been characterized. To allow identification of the most clinically relevant receptor subtype, the elucidation of rat (r) AMY receptor pharmacology is necessary. EXPERIMENTAL APPROACH Receptors were transiently transfected into COS-7 cells and cAMP responses measured in response to different agonists, with or without antagonists. Competition binding experiments were performed to determine rAmy affinity. KEY RESULTS rCT was the most potent agonist of rCT(a) receptors, whereas rAmy was most potent at rAMY1(a) and rAMY3(a) receptors. rAmy bound to these receptors with high affinity. Rat a-calcitonin gene-related peptide (CGRP) was equipotent to rAmy at both AMY receptors. Rat adrenomedullin (AM) and rAM2/intermedin activated all three receptors but were most effective at rAMY3(a). AC187, AC413 and sCT8-32 were potent antagonists at all three receptors. raCGRP8-37 displayed selectivity for rAMY receptors over rCT(a) receptors. rAMY8-37 was a weak antagonist but was more effective at rAMY1(a) than rAMY3(a). CONCLUSIONS AND IMPLICATIONS AMY receptors were generated by co-expression of rCT(a) with rRAMP1 or 3, forming rAMY1(a) and rAMY3(a) receptors, respectively. CGRP was more potent at rAMY than at hAMY receptors. No antagonist tested was able to differentiate the rAMY receptor subtypes. The data emphasize the need for and provide a useful resource for developing new CT or AMY receptor ligands as pharmacological tools or potential clinical candidates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available