4.7 Article

Contractile agonists attenuate cGMP levels by stimulating phosphorylation of cGMP-specific PDE5; an effect mediated by RhoA/PKC-dependent inhibition of protein phosphatase 1

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 153, Issue 6, Pages 1214-1224

Publisher

WILEY
DOI: 10.1038/sj.bjp.0707686

Keywords

phosphodiesterases; protein kinase G; protein phosphatase; muscle relaxation

Funding

  1. NIDDK NIH HHS [R01 DK028300, DK 28300] Funding Source: Medline

Ask authors/readers for more resources

Background and purpose: In gastrointestinal smooth muscle cGMP levels in response to relaxant agonists are regulated by PKG-mediated phosphorylation and activation of phosphodiesterase 5 (PDE5). The aim of the present study was to determine whether contractile agonists modulate cGMP levels by cross-regulating PDE5 activity and to identify the mechanism of action. Experimental approach: Dispersed and cultured muscle cells from rabbit stomach were treated with the nitric oxide donor, S-nitrosoglutathione (GSNO), or with a contractile agonist, ACh and GSNO. PDE5 phosphorylation and activity, and cGMP levels were determined. Key results: GSNO stimulated PDE5 phosphorylation and activity and increased cGMP levels in gastric smooth muscle cells. Concurrent activation of cells with ACh augmented GSNO-stimulated PDE5 phosphorylation and activity, and attenuated cGMP levels. The effect of ACh was blocked by the m3 receptor antagonist and by inhibitors of protein kinase C (PKC) or RhoA, but not by the m2 receptor antagonist or inhibitors of PI hydrolysis. The effects of ACh on PDE5 phosphorylation and activity, and cGMP levels were mimicked by a low concentration of tautomycin (10 nM), and a high (1 mu M) but not low (1 nM) concentration of okadaic acid. PDE5 was associated with protein phosphatase 1 (PP1) and dephosphorylated by the catalytic subunit of PP1 but not PP2A. Conclusion and implications: In gastrointestinal smooth muscle cGMP levels are cross-regulated by contractile agonists via a mechanism that involves RhoA-dependent, PKC-mediated inhibition of PP1 activity. This leads to augmentation of PDE5 phosphorylation and activity, and inhibition of cGMP levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available