4.7 Review

The contribution of cyclooxygenase-2 to endocannabinoid metabolism and action

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 152, Issue 5, Pages 594-601

Publisher

WILEY
DOI: 10.1038/sj.bjp.0707379

Keywords

endocannabinoid; anandamide; 2-arachidonoylglycerol; fatty acid amide hydrolase; monoacylglycerol lipase; cyclooxygenase-2; non-steroidal anti-inflammatory agents; prostaglandin ethanolamide; prostaglandin glycerol ester

Ask authors/readers for more resources

The development of sensitive analytical methods for measurement of endocannabinoids, their metabolites, and related lipids, has underlined the complexity of the endocannabinoid system. A case can be made for an 'endocannabinoid soup' (akin to the inflammatory soup) whereby the net effect of a pathological state and/or a pharmacological intervention on this system is the result not only of changes in endocannabinoid levels but also of their metabolites and related compounds that affect their function. With respect to the metabolism of anandamide and 2-arachidonoylglycerol, the main hydrolytic enzymes involved are fatty acid amide hydrolase and monoacylglycerol lipase. However, other pathways can come into play when these are blocked. Cyclooxygenase-2 derived metabolites of anandamide and 2-arachidonoylglycerol have a number of properties, including effects upon cell viability, contraction of the cat iris sphincter (an effect mediated by a novel receptor), mobilization of calcium and modulation of synaptic transmission. Nonsteroidal anti-inflammatory agents, whose primary mode of action is the inhibition of cyclooxygenase, can also interact with the endocannabinoid system both in vitro and in vivo. Other enzymes, such as the lipoxygenase and cytochrome P450 oxidative enzymes, can also metabolize endocannabinoids and produce biologically active compounds. It is concluded that sensitive analytical methods, which allow for measurement of endocannabinoids and related lipids, should provide vital information as to the importance of these alternative metabolic pathways when the primary hydrolytic endocannabinoid metabolizing enzymes are inhibited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available