4.7 Review

Emerging pharmacology and physiology of neuromedin U and the structurally related peptide neuromedin S

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 158, Issue 1, Pages 87-103

Publisher

WILEY
DOI: 10.1111/j.1476-5381.2009.00252.x

Keywords

energy homeostasis; neuromedin S; neuromedin U; NMU1; NMU2; smooth muscle contraction

Funding

  1. British Heart Foundation [PS/02/001, FS/05/020/18408, PG/05/127/19872]

Ask authors/readers for more resources

Neuromedin U (NMU) has been paired with the G-protein-coupled receptors (GPRs) NMU1 (formely designated as the orphan GPR66 or FM-3) and NMU2 (FM-4 or hTGR-1). Recently, a structurally related peptide, neuromedin S (NMS), which shares an amidated C-terminal heptapeptide motif, has been identified in both rat and human, and has been proposed as a second ligand for these receptors. Messenger RNA encoding NMU receptor subtypes shows differential expression: NMU1 is predominantly expressed in peripheral tissues, particularly the gastrointestinal tract, whereas NMU2 is abundant within the brain and spinal cord. NMU peptide parallels receptor distribution with highest expression in the gastrointestinal tract and specific structures within the brain, reflecting its major role in the regulation of energy balance. The NMU knockout mouse has an obese phenotype and, in agreement, the Arg165Trp amino acid variant of NMU-25 in humans, which is functionally inactive, co-segregated with childhood-onset obesity. Emerging physiological roles for NMU include vasoconstriction mediated predominantly via NMU1 with nociception and bone remodelling via NMU2. The NMU system has also been implicated in the pathogenesis of septic shock and cancers including bladder carcinoma and acute myeloid leukaemia. Intriguingly, NMS is more potent at NMU2 receptors in vivo where it has similar central actions in suppression of feeding and regulation of circadian rhythms to NMU. Taken together with its vascular actions, NMU may be a functional link between energy balance and the cardiovascular system and may provide a future target for therapies directed against the disorders that comprise metabolic syndrome. British Journal of Pharmacology (2009) 158, 87-103; doi:10.1111/j.1476-5381.2009.00252.x; published online 10 June 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available