4.8 Article

Combinatorial resveratrol and quercetin polymeric micelles mitigate doxorubicin induced cardiotoxicity in vitro and in vivo

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 213, Issue -, Pages 128-133

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2015.06.040

Keywords

Doxorubicin; Cardiotoxicity; Natural products; Chemosensitization; Polymeric micelles

Ask authors/readers for more resources

Doxorubicin hydrochloride (ADR) is an anthracycline antibiotic used to treat various cancers. However, due to its extensive cardiotoxic side effects a lifetime cumulative dose limit of 450-550 mg/m(2) exists. The postulated mechanism of the cardiotoxicity is generation of reactive oxygen and nitrogen species. Natural products like resveratrol (RES), and quercetin (QUE) are known free radical scavengers and have shown cardioprotective effects. However, concurrent dosing of these natural products with ADR is limited due to their low solubility, and low oral bioavailability. We hypothesize that the combination of RES and QUE in Pluronic (R) F127 micelles (mRQ) when co-administered with ADR, will be cardioprotective in vitro and in vivo, while maintaining or increasing the efficacy of ADR against cancer cell lines in vitro. We prepared mRQ micelles capable of retaining 1.1 mg/mL and 1.42 mg/mL of RES and QUE respectively. The in vitro release of RES and QUE from the micelles followed first order kinetics over 48 h. In vitro cell viability and combination index analysis studies in human ovarian cancer cells (SKOV-3) and rat cardiomyocytes (H9C2) showed that RES:QUE: ADR at 10:10:1 ratio was synergistic in SKOV-3 cells and antagonistic in H9C2 cells. Caspase 3/7 activity studies indicated that mRQ did not interfere with ADR caspase activity in SKOV-3 cells but significantly decreased it in H9C2 cells. The generation of reactive oxygen species (ROS) in SKOV-3 and H9C2 cells in the presence of mRQ also indicated no changes in ROS activity in SKOV-3 cells but significant scavenging in H9C2 cells. Healthy mice were exposed to acute doses of ADR and ADR with mRQ. Based on biochemical estimations the presence of mRQ with ADR conferred full cardioprotection in these mice. Concurrent administration of mRQ with ADR at 10:10:1 ratio provides a viable strategy to mitigate acute ADR induced cardiotoxicity. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available