4.7 Article

Erythropoietin protects the human myocardium against hypoxia/reoxygenation injury via phosphatidylinositol-3 kinase and ERK1/2 activation

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 153, Issue 1, Pages 50-56

Publisher

WILEY
DOI: 10.1038/sj.bjp.0707461

Keywords

hypoxia; reoxygenation; signal transduction; diabetes; MAP kinase; PI3K/Akt; caspase 3; human myocardium

Ask authors/readers for more resources

Background and purposes: Erythropoietin (EPO) has been shown to protect against myocardial infarction in animal studies by activating phosphatidylinositol-3 kinase (PI3K)/Akt and ERK1/2. However these pro-survival pathways are impaired in the diabetic heart. We investigated the ability of EPO to protect human atrial trabeculae from non-diabetic and diabetic patients undergoing coronary artery bypass surgery, against hypoxia-reoxygenation injury. Experimental approach: Human atrial trabeculae were exposed to 90min hypoxia and 120min reoxygenation. EPO was administered throughout reoxygenation. The developed force of contraction, calculated as a percentage of baseline force of contraction, was continuously monitored. The involvement of PI3K and ERK1/2 and the levels of activated caspase 3(AC3) were assessed. Key results: EPO improved the force of contraction in tissue from non-diabetic patients (46.7+/-1.7% vs. 30.2+/-2.2% in control, p < 0.001). These beneficial effects were prevented by the PI3K inhibitor, LY294002 and the ERK1/2 inhibitor, U0126. EPO also significantly improved the force of contraction in the diabetic tissue, although to a lesser degree. The levels of activated caspase 3 were significantly reduced in EPO treated trabeculae from both non-diabetic and diabetic patients, relative to their respective untreated controls. Conclusions and implications: EPO administered at reoxygenation protected human myocardial muscle by activating PI3K and ERK1/2 and reducing the level of activated caspase 3. This cardioprotection was also observed in the diabetic group. This data supports the potential of EPO being used as a novel cardioprotective strategy either alone or as an adjunct in the clinical setting alongside existing reperfusion therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available