4.7 Article

Mechanisms underlying the metabolic actions of galegine that contribute to weight loss in mice

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 153, Issue 8, Pages 1669-1677

Publisher

WILEY
DOI: 10.1038/bjp.2008.37

Keywords

galegine; 3T3-L1 adipocytes; L6 myotubes; glucose uptake; acetyl CoA carboxylase; AMPK

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

Background and purpose: Galegine and guanidine, originally isolated from Galega officinalis, led to the development of the biguanides. The weight-reducing effects of galegine have not previously been studied and the present investigation was undertaken to determine its mechanism(s) of action. Experimental approach: Body weight and food intake were examined in mice. Glucose uptake and acetyl-CoA carboxylase activity were studied in 3T3-L1 adipocytes and L6 myotubes and AMP activated protein kinase (AMPK) activity was examined in cell lines. The gene expression of some enzymes involved in fat metabolism was examined in 3T3-L1 adipocytes. Key results: Galegine administered in the diet reduced body weight in mice. Pair-feeding indicated that at least part of this effect was independent of reduced food intake. In 3T3-L1 adipocytes and L6 myotubes, galegine (50 mM-3mM) stimulated glucose uptake. Galegine (1-300 mM) also reduced isoprenaline-mediated lipolysis in 3T3-L1 adipocytes and inhibited acetylCoA carboxylase activity in 3T3-L1 adipocytes and L6 myotubes. Galegine (500 mM) down-regulated genes concerned with fatty acid synthesis, including fatty acid synthase and its upstream regulator SREBP. Galegine (10 mM and above) produced a concentration-dependent activation of AMP activated protein kinase (AMPK) in H4IIE rat hepatoma, HEK293 human kidney cells, 3T3-L1 adipocytes and L6 myotubes. Conclusions and implications: Activation of AMPK can explain many of the effects of galegine, including enhanced glucose uptake and inhibition of acetyl-CoA carboxylase. Inhibition of acetyl-CoA carboxylase both inhibits fatty acid synthesis and stimulates fatty acid oxidation, and this may to contribute to the in vivo effect of galegine on body weight.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available