4.8 Article

Hybrid nanoparticles for combination therapy of cancer

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 219, Issue -, Pages 224-236

Publisher

ELSEVIER
DOI: 10.1016/j.jconrel.2015.09.029

Keywords

Hybrid nanoparticle; Co-delivery; Synergistic effect; Combination therapy of cancer

Funding

  1. NIH [U01-CA151455]
  2. University of Chicago Medicine Comprehensive Cancer Center (NIH CCSG) [P30 CA014599]

Ask authors/readers for more resources

Nanoparticle anticancer drug delivery enhances therapeutic efficacies and reduces side effects by improving pharmacokinetics and biodistributions of the drug payloads in animal models. Despite promising preclinical efficacy results, monotherapy nanomedicines have failed to produce enhanced response rates over conventional chemotherapy in human clinical trials. The discrepancy between preclinical data and clinical outcomes is believed to result from the less pronounced enhanced permeability and retention (EPR) effect in and the heterogeneity of human tumors as well as the intrinsic/acquired drug resistance to monotherapy over the treatment course. To address these issues, recent efforts have been devoted to developing nanocarriers that can efficiently deliver multiple therapeutics with controlled release properties and increased tumor deposition. In ideal scenarios, the drug or therapeutic modality combinations have different mechanisms of action to afford synergistic effects. In this review, we summarize recent progress in designing hybrid nanoparticles for the co-delivery of combination therapies, including multiple chemotherapeutics, chemotherapeutics and biologics, chemotherapeutics and photodynamic therapy, and chemotherapeutics and radiotherapy. The in vitro and in vivo anticancer effects are also discussed. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available