4.8 Article Proceedings Paper

A functionalized, injectable hydrogel for localized drug delivery with tunable thermosensitivity: Synthesis and characterization of physical and toxicological properties

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 208, Issue -, Pages 76-84

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2015.03.003

Keywords

Injectable hydrogel; Peptide; Drug delivery; Cell therapy; Immunotherapy; Spinal cord injury

Funding

  1. CDMRP SCRIP Investigator Initiated Award [SC130249]
  2. Craig H. Neilsen Foundation [259216]
  3. National Science Foundation Graduate Research Fellowship [2013163401]

Ask authors/readers for more resources

Thermosensitive injectable hydrogels have been used for the delivery of pharmacological and cellular therapies in a variety of soft tissue applications. A promising class of synthetic, injectable hydrogels based upon oligo(ethylene glycol) methacrylate (OEGMA) monomers has been previously reported, but these polymers lack reactive groups for covalent attachment of therapeutic molecules. In this work, thermosensitive, amine-reactive and amine-functionalized polymers were developed by incorporation of methacrylic acid N-hydroxysuccinimide ester or 2-aminoethyl methacrylate into OEGMA-based polymers. A model therapeutic peptide, bivalirudin, was conjugated to the amine-reactive hydrogel to investigate effects on the polymer thermosensitivity and gelation properties. The ability to tune the thermosensitivity of the polymer in order to compensate for peptide hydrophilicity and maintain gelation capability below physiological temperature was demonstrated. Cell encapsulation studies using an H9 T-cell line (CD4+) were conducted to evaluate feasibility of the hydrogel as a carrier for cellular therapies. Although this class of polymers is generally considered to be non-toxic, it was found that concentrations required for gelation were incompatible with cell survival. Investigation into the cause of cytotoxicity revealed that a hydrolysis byproduct, diethylene glycol monomethyl ether, is likely a contributing factor. While modifications to structure or composition will be required to enable viable cell encapsulation, the functionalized injectable hydrogel has the potential for controlled delivery of a wide range of drugs. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available