4.7 Article

Oxygenated organic functional groups and their sources in single and submicron organic particles in MILAGRO 2006 campaign

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 9, Issue 18, Pages 6849-6863

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-9-6849-2009

Keywords

-

Funding

  1. DOE [W/GEC05-010, MPC35TA-A5]
  2. NSF [ATM-0511772]

Ask authors/readers for more resources

Fourier Transform Infrared ( FTIR) and X-ray Fluorescence (XRF) were used to measure organic functional groups and elements of submicron particles collected during MILAGRO in March 2006 on three platforms: the Mexico City urban area (SIMAT), the high altitude site at 4010 m (Altzomoni), and the NCAR C130 aircraft. Scanning Transmission X-ray Microscopy (STXM) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) were applied to single particle organic functional group abundance analysis of particles simultaneously collected at SIMAT and C130. Correlations of elemental concentrations showed different groups of source-related elements at SIMAT, Altzomoni, and C130, suggesting different processes affecting the air masses sampled at the three platforms. Cluster analysis resulted in seven distinct clusters of FTIR spectra, with the last three clusters consisting of spectra collected almost exclusively on the C130 platform, reflecting the variety of sources contributing to C130 samples. Positive Matrix Factorization (PMF) of STXM-NEXAFS spectra identified three main factors representing soot, secondary, and biomass burning type spectra. PMF of FTIR spectra resulted in two fossil fuel combustion factors and one biomass burning factor, the former representative of source regions to the northeast and southwest of SIMAT. Alkane, carboxylic acid, amine, and alcohol functional groups were mainly associated with combustion related sources, while non-acid carbonyl groups were likely from biomass burning events. The majority of OM and O/C was attributed to combustion sources, although no distinction between direct emissions and atmospherically processed OM could be identified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available